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Abstract. Automatically understanding and modeling a user’s liking
for an image is a challenging problem. This is because the relationship
between the images features (even semantic ones extracted by existing
tools, viz. faces, objects etc) and users’ ‘likes’ is non-linear, influenced
by several subtle factors. This work presents a deep bi-modal knowledge
representation of images based on their visual content and associated
tags (text). A mapping step between the different levels of visual and
textual representations allows for the transfer of semantic knowledge be-
tween the two modalities. It also includes feature selection before learning
deep representation to identify the important features for a user to like
an image. Then the proposed representation is shown to be effective in
learning a model of users image ’likes’ based on a collection of images
'liked” by him. On a collection of images ’liked’ by users (from Flickr)
the proposed deep representation is shown to better state-of-art low-level
features used for modeling user ’likes’ by around 15-20%.

1 Introduction

This work investigates the answer to the question - “Why did a user like an
image?”. If there was only one image and we had no clue about the user, it would
be a very hard question to answer. But, given a collection of images that the user
has ‘liked’, it should be possible to model the user’s taste and infer more on -
“What ‘kind’ of images the user ‘likes’?”. Based on this knowledge, images that
the user has not seen and may probably ‘like’ can be recommended. Conversely,
given an image and a set of users, we should be able to predict the user(s) who
will ‘like’ the image.

The notion of ‘like’ is very subjective and subtle, and hence hard to de-
scribe by methods or processes. This makes the process of modeling user’s taste
hard. If we know a set of pictures that a user has ‘liked’, then computationally
we can consider several factors that can contribute towards the user liking the
images, namely, the affective factors,the objects in the image and their perspec-
tives/poses, the setting of the image, colors or no colors, the context of the ima-
* denotes equal contribution.
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Fig. 1: Users have innate preferences which draw them to different ’kinds’ of images.

ge, etc., all of which induce the user to have some emotional connection with the
image. The question this work investigates is “How do these factors influence
the user’s liking for an image?” For example, Fig. 1 shows the set of images liked
by four different users. The difference between Users 1,2 and 3,4 is that while
one group (Users 3 & 4) tends to like images with a lot of people and faces , the
other group (Users 1 & 2) likes images without people. Even within Users 3 &
4 we can see that User 3 tends to like black and white images whereas User 4
tends to like color images. Similarly User 1 tends to like images which are spread
out and natural whereas User 2 tends to like images with high clutter and which
have some tinge of graphics in them.

While visual content does play a significant role in capturing the users’ pref-
erences, we note that tags associated with images often enhance the information
conveyed by visual features or sometimes compliment them by conveying infor-
mation about the image which visual features fail to convey [1]. Users tend to
like an image because it is a place that they have visited before or because they
relate to the person in the image or the scene in the image triggers a memory
from their past and so on. This ’contextual’ value associated with images is often
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Fig. 2: Tags can show perspectives which Visual features can fail to convey.

captured by the tags associated with an image [2]. While tags primarily convey
the concepts in an image which visual detectors can be trained to detect (for
example the objects in the image etc.), they many a time convey semantic con-
cepts that go beyond what traditional visual detectors can be trained to detect.
We can also attribute the varieties in ‘likes’ to the users psychophysical nature
or personality. The role of personality in influencing preferences has been stud-
ied in several domains (viz. music [3,4], images [5,6]). However, in this work
we are not trying to learn the users’ personality. Rather we aim to learn deep
representations for the image based on all the factors we can think of and how
they combine to induce a user to ‘like’ the image.

Difference from Deep Learning for Concepts Detection: The images
we consider are accompanied with associated textual information (tags). Visual
and textual information have been used in the computer vision literature to
model contents for tasks like categorization, image search and so on. We wish
to highlight that predicting ‘likes’ is different from visual concept detection as
the supervisory information for modeling ‘likes’ is subtle and cannot be visually
verified. Modeling such subtle response would intuitively involve a combination
of several higher level semantic factors viz. context, affective and aesthetic. The
goal is to look for mid-level representation that can help model user ‘likes’.
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Contributions (1) Unlike [7], this work investigates the user ‘like’ modeling
problem based on a larger collection of semantic, syntactic, aesthetic and con-
textual features. (2) A deep bimodal knowledge representation from the initial
collection of features is proposed that allows for knowledge transfer between the
modalities (visual and text). These features are used to learn a model for pre-
dicting user ‘likes’ for images. The efficacy of the proposed approach (usage of
high-level features and the learning process of deep bimodal representations) is
evaluated in an image recommendation scenario. Throughout the text, we use the
phrase ‘high-level features’ to denote the features mentioned in Section 2 and the
phrase ‘low-level features’ to denote the features mentioned in [7]. The proposed
deep representation is denoted as ‘deep bimodal feature representation’.

2 Semantic Feature Representation

In this section We give a short description and motivation for using the men-
tioned semantic features. Table 1

1. Head and Upperbody recognition: Presence of people plays a significant
role in the way images are perceived [8]. And most images have persons who
are only partially visible. The field of view typically shows only their upper
body. For this situation, we used an upper-body detector for near frontal
viewpoints [9]. And for images where the field of view consists only the
head, we employed the head detector [10].

2. Face and Pose recognition: We find that some people tend to like images
where people are looking away from the camera, and others tend to like
images where people are looking at the camera. We extracted the relative
area of the bounding boxes returned by the algorithm [11], along with the
pose angle to categorise a face as a profile/frontal face.

3. Gender identification: Images with people are found to be liked and com-
mented upon heavily by members of the opposite gender [12]. Output from
the face detection was used as input for the IntraFace [13] to enable it to
detect distribution of gender in the images users liked.

4. Scene Features: What is in an image can be ’summarised’ by its scene.
We selected the PRICoLBP feature [14] which was shown to be effective for
scene classification task.

5. Computer Graphics image: With the advancement of computer graph-
ics, very attractive images can be rendered, which capture the attention of
people. Flickr even has groups [15] where computer graphics images are ex-
clusively posted and discussed about. At the same time there are users who
like natural images. They can be distinguished using geometry features [16].

6. Saliency: threshold count: Saliency gives a possible point of attention of
a viewer. We find that saliency also gives an idea of the scale of the image.
Zoomed-in images usually have spread out saliency, which tells that there
is nothing explicit in the image grabbing the attention of the user. This is
also the case with images which have a scenic backdrop. But iconic images
or images with clear objects show sharp saliency spikes. To capture if users
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like iconic images or otherwise, we used saliency [17] to compute the average
number of maximal intensity points in an image relative to a threshold.

7. Black and white vs. color image: People who like black & white images
are believed to be attracted by the focus, subtlety of tones and versatility in
those images [18]. [19, 20].

8. Visual Clutter: People characterized by anxious and tense behavior tend to
have different tastes when compared with people with peaceful and easygoing
outlook. To capture this cue, we use visual clutter which can be a good
descriptor to measure the busy-ness of an image.

It can also be used as an alternative to the number of objects in the scene
as the latter is difficult to measure for natural scenes. We used the feature
congestion measure [21] for measuring clutter.

9. Tags: We construct a dictionary of tags (with an average of 9.1 tags per im-
age). We removed some stop words like camera names (’kodak’,’fujifilm’,’canon’
etc), lens characteristics ("70mm’,’eos’ etc), and ’generic’ words like image’
and 'photo’, just having a single letter (’a-Z’) or number (°0-9’). The tag fea-
ture matrix is binary and sparse unlike the visual feature matrix. We then
apply sparse SVD to convert the sparse tags feature matrix into a compressed
representation (refer [2]).

Table 1: List of Features (with newly added features on the right-hand column)

List of Features used

Color: avg. intensity of RGB Head and Upperbody recognition
#Edges: Canny edge detection Face and Pose recognition
Texture index Gender identification
Regions: using mean shift segmentation algorithm|Scene Classification
#0ODbjects: using Deformable Parts Models Computer Graphics vs. Natural image
#Number of Faces: using Voila Jones detector Saliency
GIST Descriptors Black & White vs. Color image
Entropy Visual Clutter

Tags

3 Proposed Approach

The framework for modeling user ‘likes’ is depicted in Fig. 3. This includes
the design steps for bimodal deep knowledge representation and the process of
training a model for predicting user ‘likes’. There are two separate parts in this
framework. (a) Identifying the features in the initial feature collection which
influence a user the most in liking the image (Section 3.1). This gives us an idea
of the features among the initial collection of features that would be considered
relevant if we did not have mid-level representations. (b) Learning the deep
bimodal representation of images (described in Section 3.2).
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Fig. 3: Framework for modeling user ’likes’.

3.1 User-specific Feature Selection

The features described in Section 2 are semantic concepts to represent an image.
However it is not clear what influences a user to ‘like’ an image as intuitively,
only a specific set of features might contribute for each user to like an image.
Formally, the selection of most informative features for users can be expressed
as solving a sparse SVM formulation as follows (similar to [22]):

1 C <
Hgﬂg’lig§||w||§+§;6i2—p (1)
st. yiw! (x,0d) >p—e, (2)

where d € D = {||d|jp < B,d; € {0,1}} and 1, 0 indicate that the feature is
selected or not respectively. x denotes the feature vector, w denotes the weight
vector, p is the bias, ¢; is the ith instances loss incurred by classifiers, B is
the number of features to be selected and C is the trade-off parameter. Solving
the above optimization is a NP-hard problem with lots of possible combinations
of features. To reduce the computation cost, we adopt the Feature Generation
Machine (FGM) [22] method to learn d and w simultaneously, which represent
the index of selected features and their corresponding weight. For more details
of solving this problem, please refer to [22].

3.2 Learning Deep Bimodal Feature Representation

Multi-view fusion has been widely studied in machine learning to improve per-
formance of various tasks. [23-25]. Especially, several methods for fusing visual
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and textual information related to images have been proposed (eg: CCA [2]).
These methods essentially find linear projections of two random vectors that
are maximally correlated. While these approaches have been very successful in
applications like image search and so on, it must be noted that mapping features
to user ‘likes’ is by nature non-linear and hence such linear approaches could fail.
Although kernel versions of such linear projection based methods exist (KCCA
[26]), the time required to train (i.e, to compute the joint representations of two
domains) scales poorly with training data size. We also note that while kernel
methods are aimed at finding higher dimensional space where data can be lin-
early separable, the motivation of this problem necessitates finding better feature
representations (which are not necessarily separable in higher dimensions).

Recently, there have also been works [27] which learn multimodal representa-
tions of images using deep learning methods. However, we use deep networks to
learn multi-layer nonlinear representations of both tag and visual features indi-
vidually. At every layer, we “translate” the features from tag domain into visual
domain. We concatenate the visual features and the “translated” tag features at
every layer and use this as the representation for every image. The entire process
is described formally in Algorithm 1. The initial idea of feature translation is
inspired from [28] where heterogenous feature mapping was done on text domain
of different languages. However, our proposed method is different from [28] in
two aspects:

— The algorithm in [28] is for heterogeneous transfer learning [29], while we
focus on learning multimodal representations by augmenting features for
classification.

— The deep structure in [28] learns feature representation in the same layer
across domains, however we propose a new architecture for multi-modal rep-
resentations shown in Figure 4 based on the intuitions presented in Section
3.2. The translators learnt across layers are expected to aid in capturing more
information about user likes, thereby increasing the model performance.

Multi-layer Homogeneous Feature Learning Marginalized Stacked Denois-
ing Autoencoders (mSDA) [30] are used to form a deep network wherein layer-
wise nonlinear transformations of the Visual and Textual features of an image
are learned. We choose mSDA because of its advantages like faster training time
and implementation simplicity, when compared to other forms of Autoencoders.
The mid-level representations thus learned by the deep network are found to be
very effective features for classification with SVMs [28, 27].

In presenting the formulation, we follow the notations used in [30] for simplic-

ity. We absorb a constant feature into the selected feature vector as xy = [x{, 1]T
or x7 = [x4 1]7, and incorporate a bias term b within the weight matrix as

Wy = [Wy by]. We further denote Xy as Visual Domain data, and Xy the
union tag domain data.

Firstly, for the Visual Domain data, we apply mSDA on Xy, to learn a weight
matrix Wy, € R(@v+D)x(dv+1) by minimizing the squared reconstruction loss as
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Fig. 4: Learning Deep Feature Representation.

follows,

2

> xv - wex?| 3)
i=1

where X%,i) denotes the i-th corrupted version of Xy . The solution to (3) depends
on how the original features are corrupted which can be explicitly expressed as
follows,

Wy =PQ ! with Q=XyX{ and P =Xy X/, (4)

where XV = [Xy Xy -+ Xy] denotes the m-times repeated version of Xy, and
Xv is the corrupted version of )A(v. In general, to alleviate bias in estimation, a
large number of m over the training data with random corruptions are required,
which is computationally expensive. To address this issue, mSDA introduces a
corruption probability p to model infinite corruptions, i.e., m — oo. Then a
feature vector q = [L—p,---,1—p,1]T € R¥*! is defined, where q; represents
the probability of a feature indexed by ¢ “surviving” after the corruption. Thus,
we can obtain the expectation of (3), and its solution can be written analytically
as

Wy =E[PE[Q] ™", ()

where E[P];; = S;5q;, S = Xy X, and

- _ [ Sijaiq;, i # g,
E[P];; _{ Sijdi, otherwise. ©)

After Wy is learned, the nonlinearity of features is injected through the nonlin-
ear encoder function h(-) that is learned together with the reconstruction weights
Wy, mSDA applies a nonlinear squashing-function, e.g., the hyperbolic tangent
function tanh(-), on the outputs of mSDA, hy = tanh(Wy Xy ), to generate
nonlinear features.
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Cross-layer Heterogeneous Feature Mapping So far, in a specific layer k
of feature learning, we have learned a pair of reconstruction weights W¥ and
W and higher-level feature representations h{“, and h% for the visual and tags
domain data respectively (architecture shown in Fig. 4). By denoting h"“/ and h]f
the layer k and layer j feature representations of the cross-domain corresponding
instances in the visual and tag domains respectively, we now introduce how to
learn a feature mapping across heterogeneous features h¥ and h..

Algorithm 1 Deep Heterogenous Feature Mapping.

Input: tag domain data Dy = {x7,}]%,, visual domain data Dy = {(xv;, yv;) } 121,
a feature corruption probability p in mSDA, a trade-off parameter )\, and the number
of layers K.

Initializations: Xy, X7, hi, = Xy, ht. = X7, and learn G; by solving

min by — Giahr|[F + AGaa |-
1,1

Run FGM to select relevant features
fori=2,...,K do _ _
1: Apply mSDA on h{;l and h’{l:

{Wi, hi} = mSDA(hy ', p),
{Wi, h7} = mSDA(hy ', p).
end for
for j=1,...,K do

fork=j5+1,..,K do
2: Learn heterogeneous feature mapping Gg,;:

min ||hy, — G jh% % + A G 5|7
G, j
end for

end for
Do feature augmentation on visual domain data and mapped tag domain data

T T
Zy =y - Giyhy |7,

and train a classifier f with {Zv,Yv}.
OutPUt: f7 {ka]'}g,]’:h {W{C/}I}f:% and {W];’}i(:Z

Specifically, from layer j of text domain to layer k of visual, we aim to learn a
feature transformation Gy ; € R(4v+1x(dr+1) "where a bias term is incorporated
by minimizing the following objective,

Iy — G b l[f + NGl 7 (7)

where A > 0 is a parameter of the regularization term on Gy j, which controls
the tradeoff between the alignment of heterogeneous features and the complexity
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of Gy ;. It can be shown that the optimization problem (7) has a closed form
solution which can be written as follows,

T LT
Gy,; = (hyh) )(hjh) + D)7, (8)

where I is the identity matrix of the dimensionality dr + 1.

We note that learning the feature mapping between a layer of tags and all
the corresponding higher layers of visual features might probably capture the
semantics of the image better than mapping between the same layers. For exam-
ple, given a picture of sunset - tag associated with it might be ’sunset’, whereas
the visual features will depict the colors in the image like 'red’, ’yellow’ and low
clutter in the image and so on. We can see that the tag features are in this
case are at a higher level of semantics when compared to visual features, there-
fore making the mapping between this layer of tags and higher layers of visual
features more meaningful.

4 Experiments

4.1 Dataset

For the experiments, from Flickr we crawled 200 images (and tags associated
with each image) each marked as favorite by 20 random users (i.e., a total of
4000 images). For every image, we extract the features mentioned in Section
2 using default-parameters of the of the softwares provided by the cited works
along with low-level features mentioned in [7].

4.2 Results and Analysis
We attempt to investigate the following questions in this section:

1. How do high-level features compare with low-level features in representing
user ‘likes’? Can we represent a user’s ‘likes’ more efficiently with high-level
visual features?

2. What features influence a user the most in ‘liking’ an image?

3. How well do the bimodal deep representations perform in modeling users’
preferences when compared to individual modalities?

While the first two questions deal with the efficacy of using the proposed
high-level features (without any deep learning involved) in representing user
‘likes’, the third question deals with the efficacy of using the learned bimodal
deep representations in representing user ‘likes’.

Comparing high-level features with low-level features: For answering
the first question, we compare the performance of high-level features and low-
level features in discriminating users’ ‘likes’. For each user, we divide the data
(images) into training and test sets (with three splits a) 25%/75% b) 50%/50%
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Fig. 5: High-Level features require lesser amount of training data to capture users’
preferences when compared to low-level features.

and c) 75%/25%) and build a one-vs-all user classification module using FGM
(described in 3.1). For each split we note the accuracy of user being correctly
predicted for the test images (shown in Fig. 5). When low-level features are
used, the model’s performance varies based on the amount of training data, but
when high-level features are used, the model performs well with less amount of
training data. The reason for this can be ascertained to the amount of informa-
tion the model is able to gather with each image based on the features. While
low-level features would need a lot of examples to identify the patterns in users’
preferences, this would not be required in case of high-level features.

Using the above one-vs-all models, we ranked the test images for each user
based on the score given by the classifiers and we obtained the mean recall
curves with high-level features and low-level features (shown in Fig. 6). For
many users, the model also retrieves images in top-k which were not actually
tagged as favorite by the user, but upon visual inspection we found that they had
very similar characteristics to that of the images that the user tagged as favorite.
These so-called ’false-positives’ are expected because the user is not expected to
have seen all the images that other users have tagged as favorite and therefore
we cannot rule out the possibility that the user would like the image, provided
the user sees it. As we know only the relevant images (user ’likes’), we use recall
as the metric to measure the model’s performance. For every user a total of
3800 images are provided as test images and within the images ranked as top
100, high-level features can retrieve about 30% of the images ‘liked’ by the user
while low-level features can retrieve only 15%. Also high-level features are able
to retrieve all the images ’liked’ by the user around 15% faster than low-level
features. This again confirms the results shown in the previous experiment (in
Fig. 5).
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Comparison of Recall at k using
High-Level Features and Low-Level Features

-A-High-Level Features  -m-Low-Level Features

Fig. 6: Image retrieval performance to users is higher with high-level features than by
using low-level features.

Features Relevant to each User: While conducting the above experiment,
we also note the features selected by FGM to answer the second question. As
mentioned in Section 1, we find that most users have preferences which can be
captured by high-level semantic features. The weights learnt, along with random
images liked by three users, are depicted in Fig. 7.

We observe that User C likes images which have pictures with people (pre-
dominantly women), User B likes colorful images and User A likes cluttered
images which have a tinge of graphics in them. Also we note that there are users
who have certain common preferences - for example both Users A and B prefer
high clutter in images. Similarly there were other instances in the data set where
more than one users had similar preferences for the presence of people in the
image (for example User’s 3 and 4 in Fig. 1). This observation can be used to
build many interesting applications of which one is providing recommendations
to a group a people (by clustering them according to personality, culture etc.).

Comparing bimodal deep representation with individual modalities:
We then train multiple layers of features for each modality using the model and
use heterogenous feature mapping described in Section 3.2 to learn mapping from
the tag features to visual features. The intuition behind using stacked auto-
encoder is that pre-training multiple layers of features can help in capturing
the characteristics of an image better (due to the non-linearities). Then, we
concatenate features in all the layers to form the 'deep-feature’ vector. To verify
the intuition behind multi-layer pre-training and also to examine the efficacy of
the trained bimodal (visual+tag) representation, we compare the performance
of every layer of individual modalities in discriminating the users’ ‘likes’ with
that of the combined bimodal representation. This is shown in Fig. 8.

We train a SVM model (using a 5-fold cross validation setting) on the com-
bined (visual+tag) features. We randomly divide the data set into 25%/75%
training and test sets. To see if the features are able to distinguish between
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Fig. 7: Features weighted for three users and a sample of images they tagged as favorite.
Users’ preferences can be represented using high-level visual features

users’ preferences, we test the accuracy of predicting the right user, given an im-
age. Modeling user likes is a personalization problem which is user centric where
the number of images liked by each user might play a more important role than
the number of users themselves. Keeping this issue in mind, we considered 200
images for each user, which is similar to that used by [5,7]. And we test the
method used in [7] on our dataset and use that as the baseline for comparing
the performance of our method.

The results (in Fig. 8) show a comparison of the performance of the above
model under different settings (i.e., using visual features alone, using tag features
alone, using bimodal features). The following observations can be made based
on the Fig. 8:

— 15%-20% increase in performance is achieved at each top-k setting by using
the deep bimodal representation when compared to baseline performance.

— Hierarchical representations give to 5-10% increase in performance when
compared to shallow models trained on corresponding individual modalities.

— From top-1 to top-5 there is an improvement of over 35-40% using bimodal
deep representation.

— Visual features model user ’likes’ better than tag features (by 20-30%) which
is different from the applications like image search etc where tag features are
more important.

— When compared with individual modalities, the combined representation
improves the performance by 10-30% which shows that a combination of
multiple modalities can model user ‘likes’ better than individual modalities.

We also found in our experiments that simple concatenation of visual and tag
features give inferior performance (5%-10% at each the layer) when compared
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Fig. 8: Comparison of bimodal deep representation with individual modali-
ties. Each graph shows the accuracy of predicting the user who tagged test images as
favorite in top-k attempts. The baseline performance (with features used in [7]) is men-
tioned for each top-k setting. Learning multi-layer bimodal representation gives better
performance than using shallow individual modalities. Layer 0 indicates the original
features and Layers 1 & 2 the deep features for each modalities. ’'Combined’ indicates
the performance of the bimodal representation at each layer.

with learning a bimodal representation using feature mapping from tag domain
to visual domain. This confirms that simple concatenation of features from dif-
ferent domains does not lead to a good representation [2] and feature mapping
is necessary to learn effective bimodal representations to model user ‘likes’.

5 Conclusion

In this paper, we attempted to model users ’likes’ using bimodal deep repre-
sentation of images on a Flickr data set. Several syntactic, semantic, aesthetic
and contextual features were used to build a deep knowledge representation for
images (using visual and textual information). A feature selection strategy was
applied to learn the most influential features for a user to like an image. Deep
bimodal representation was learnt using novel approach for knowledge transfer
between tag domain and visual domain of images to model user ’likes’. A 15%-
20% increase in performance was achieved when compared to shallow models
trained on low-level features (and a 5%-10% increase when compared to shallow
models trained on high-level features). Further work on understanding what the
mid-level representations mean and testing our method on large scale dataset is
under progress.
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